Skip to main content
Home
  • Tutorials
    • Quality Assurance
    • Software Development
    • Machine Learning
    • Data Science
  • About Us
  • Contact
programsbuzz facebook programsbuzz twitter programsbuzz linkedin
  • Log in

Main navigation

  • Tutorials
    • Quality Assurance
    • Software Development
    • Machine Learning
    • Data Science
  • About Us
  • Contact

Difference Between HDFS and HBase

Profile picture for user shiksha.dahiya
Written by shiksha.dahiya on 07/14/2021 - 10:26

Hadoop Distributed Filesystem (HDFS)

Storage component – infinitely scalable and flexible to enable storage and analysis of unlimited amounts and types of data, across clusters of industry-standard commodity hardware in an easily accessible format. HDFS is a distributed file system that is designed for storing very large files with streaming data access patterns running on clusters of commodity hardware. It was originally created and implemented by Google, where it was known as the Google File System (GFS). HDFS is designed such that it can handle large amounts of data and reduces the overall input/output operations on the network. It also increases the scalability and availability of the cluster because of data replication and fault tolerance.

HBase

HBase is a supporting component in the Hadoop group of open source projects, a non-relational database that is the de facto standard for working with Hadoop and is frequently included in commercial distribution bundles. Modeled after Google’s BigTable, HBase is capable of hosting extremely large tables (billions of rows, millions of columns) atop clusters of commodity hardware and provides real-time, programmatic and query access to HDFS. 

Apache Hbase is a non-relational(NoSQL) wide column database that sits on top of HDFS and is part of the Apache Hadoop Big Data Ecosystem. It runs on top of your Hadoop cluster and provides you random real-time read/write access to your data.

Apache Hadoop and Hbase support both structured and unstructured data. It stores data as key/value pairs in columnar fashion while HDFS can store data in various formats (Flat files, compressed format).

Differences between HDFS & HBase

HDFS is fault-tolerant by design and supports rapid data transfer between nodes even during system failures. HBase is a non-relational and open source Not-Only-SQL database that runs on top of Hadoop. HBase comes under CP type of CAP (Consistency, Availability, and Partition Tolerance) theorem.

HDFS is most suitable for performing batch analytics. However, one of its biggest drawbacks is its inability to perform real-time analysis, the trending requirement of the IT industry. HBase, on the other hand, can handle large data sets and is not appropriate for batch analytics. Instead, it is used to write/read data from Hadoop in real-time.

Both HDFS and HBase are capable of processing structured, semi-structured as well as un-structured data. HDFS lacks an in-memory processing engine slowing down the process of data analysis; as it is using plain old MapReduce to do it. HBase, on the contrary, boasts of an in-memory processing engine that drastically increases the speed of read/write.

HDFS is very transparent in its execution of data analysis. HBase, on the other hand, being a NoSQL database in tabular format, fetches values by sorting them under different key values.

  • HDFS is a storage system and HBase is a non-relational column-oriented database
  • Apache HBase provides low latency access to small amounts of data within large data sets while HDFS provides high latency operations.
  • Apache HBase supports random reads and writes while HDFS supports WORM (Write once Read Many times) and does not support real random reads.
  • HDFS is primarily accessed through MapReduce jobs while Apache HBase is accessed through shell commands, Java API, REST, Avro, or Thrift API.

HDFS stores large data sets in a distributed environment and leverages batch processing on that data. E.g. it would help an e-commerce website to store millions of customer’s data in a distributed environment which grew over a long period of time(might be 4-5 years or more). Then it leverages batch processing over that data and analyze customer behaviors, pattern, requirements. Then the company could find out what type of product, customer purchase in which months. It helps to store archived data and execute batch processing over it.

While HBase stores data in a column oriented manner where each column is stored together so that, reading becomes faster leveraging real time processing. E.g. in a similar e-commerce environment, it stores millions of product data. So if you search for a product among millions of products, it optimizes the request and search process, producing the result immediately (or you can say in real time).

Related Content
Apache HBase Tutorial
HBase Advantages and Disadvantages
Introduction to Apache HBase
Tags
Apache HBase
  • Log in or register to post comments

Choose Your Technology

  1. Agile
  2. Apache Groovy
  3. Apache Hadoop
  4. Apache HBase
  5. Apache Spark
  6. Appium
  7. AutoIt
  8. AWS
  9. Behat
  10. Cucumber Java
  11. Cypress
  12. DBMS
  13. Drupal
  14. GitHub
  15. GitLab
  16. GoLang
  17. Gradle
  18. HTML
  19. ISTQB Foundation
  20. Java
  21. JavaScript
  22. JMeter
  23. JUnit
  24. Karate
  25. Kotlin
  26. LoadRunner
  27. matplotlib
  28. MongoDB
  29. MS SQL Server
  30. MySQL
  31. Nightwatch JS
  32. PactumJS
  33. PHP
  34. Playwright
  35. Playwright Java
  36. Playwright Python
  37. Postman
  38. Project Management
  39. Protractor
  40. PyDev
  41. Python
  42. Python NumPy
  43. Python Pandas
  44. Python Seaborn
  45. R Language
  46. REST Assured
  47. Ruby
  48. Selenide
© Copyright By iVagus Services Pvt. Ltd. 2023. All Rights Reserved.

Footer

  • Cookie Policy
  • Privacy Policy
  • Terms of Use