In Pandas, there is a method drop() which can be used for the purpose of deleting rows and columns. Rows or columns can be easily removed using index labels (rows or column labels), rows or column names. It can also delete multiple rows or columns at once.
When using a multi-index, labels on different levels can be removed by specifying the level.
Syntax
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors=’raise’)
Parameters:
- labels: Index or column label which we want to drop
- axis: Wether to drop from rows or columns If 0 then rows and if 1 then columns.
- index or columns: It cannot be used together. It is an alternative to the specified axis.
- level: It is used to define the level in the case if there are multiple level indexes.
- inplace: It can make changes in the original DataFrame if it is True.
- errors: Errors are ignored if any values from the list don't exist and drop the rest of the values.
Return:
DataFrame with dropped values.
Example
import pandas as pd
df=pd.DataFrame({'Name':['Alice','John','Jill','Monica'],
'Address':['Jaipur','Delhi','Ajmer','Delhi'],
'Age':[22,25,26,23]})
print(df)
Output:
Name Address Age
0 Alice Jaipur 22
1 John Delhi 25
2 Jill Ajmer 26
3 Monica Delhi 23
print(df.drop(2))#deleting rows
Output:
Name Address Age
0 Alice Jaipur 22
1 John Delhi 25
3 Monica Delhi 23
print(df.drop('Age', axis=1))#deleting columns
Output:
Name Address
0 Alice Jaipur
1 John Delhi
2 Jill Ajmer
3 Monica Delhi